GCE 2005

January Series
 OUALIFICATIONS ALLIANCE

Mark Scheme

Mathematics/Statistics

MS/SS1B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website:
www.aqa.org.uk
Copyright © 2005 AQA and its licensors. All rights reserved.

[^0]
Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous	
	incorrect result	MC

MS/SS1B

Q	Solution	Marks	Total	Comments		
1(a)	The takings appear to increase slightly as the air temperature increases Weak positive (linear) correlation between air temperature and takings	B1		OE Comments on ranges of values of x and $y \Rightarrow$ OE		
	One (or two) unusual results	B1	2			
(b)	Monday 10	B1	1	CAO; accept point (4, 312)		
(c)	$r=0.817$ to 0.818	B3	3	AWFW for attempts at $\Sigma x, \Sigma x^{2} \times 5$ or $S_{x x} \times 3$ M1 for attempted use of correct formula		
				for r M1 for answer A1		
				If Monday 4 identified in (b), then: $r=0.0156$ to 0.0157 scores If no Monday removed, then:		
(d)	Temperature at another time Number of other/competing stalls			Or a sensible alternative		
	Month/time of year			Number of customer		
	Rainfall/snow			Weather \Rightarrow		
	Publicity	E1	1	Population of town	\Rightarrow	
	Total		7			

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
2(a)	Volume $\sim \mathrm{N}\left(\mu, 3.5^{2}\right)$			
	Mean, $\bar{x}=\frac{1830}{12}=152.5$	B1		CAO $\quad\left(s_{n-1}=3.778, s_{n}=3.617\right)$
	98\% $\Rightarrow z=2.3263$	B1		AWFW 2.32 to 2.33
	CIfor μ is $\bar{x} \pm z \times \frac{(\sigma \text { or } s)}{}$			Use of
	Cl for μ is $\bar{x} \pm z \times \frac{(\sigma)}{\sqrt{n}}$	M1		Must have ($\div \sqrt{n}$) with $n>1$
	Thus $\quad 152.5 \pm 2.3263 \times \frac{3.5}{\sqrt{12}}$	A1 \checkmark		ft on \bar{x} and z only
	(150.1 to 150.2, 154.8 to 154.9)	A1	5	AWFW
(b)	Evidence, from CI, that mean volume is (above) 150 ml	B1 \checkmark		ft on CI in part (a); must be clear comparison of mean of 150 with CI
	In sample, some cans have volumes less than 150 ml	B1		Or reference to range of can volumes in sample
	Thus claim of 150 ml is not justified	B1dep	3	Dependent upon making some comment about mean volume and some comment about individual can volume or range of can volumes
(c)				Accept 'population' or ' X^{\prime} '
	Volume is normally distributed	E1	1	but not 'it' or ' \bar{X} ' etc ie must be clear statement sample too small $\quad \Rightarrow$
	Total		9	

MS/SS1B (cont)

Question 3 (a) \& (b)

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
4(a)(i)	$\begin{gathered} X \sim \mathrm{~N}\left(\mu, 4^{2}\right) \\ \mu=106 \end{gathered}$			
	$\mathrm{P}(X<110)=\mathrm{P}\left(Z<\frac{110-106}{4}\right)$	M1		Standardising (109.5, 110 or 110.5) with 106 and $\left(\sqrt{4}, 4\right.$ or $\left.4^{2}\right)$ and/or $(106-x)$
	$=\mathrm{P}(Z<1)$	A1		CAO ; ignore sign
	$=0.841$	A1	3	AWRT (0.84134)
(ii)	$\begin{aligned} & \mathrm{P}(\text { underweight })=\mathrm{P}(X<100) \\ & =\mathrm{P}(Z<-1.5)=1-\Phi(1.5) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { m1 } \end{aligned}$		Use of AWFW 99 to 100 Area change
	$=1-0.93319=0.0668$ to 0.067	A1	3	AWFW (0.06681)
(b)	$2 \% \Rightarrow z=-2.0537$	B1		AWFW 2.05 to 2.06; ignore sign
	$z=\frac{100-\mu}{4}$	M1		Standardising AWFW 99 to 100 with μ and 4
	Thus $\frac{100-\mu}{4}=-2.0537$	m1		Equating z-term to z-value; not using 0.02 , 0.98 or $\|1-z\|$
	Thus $\mu=108.2$ to 108.3	A1	4	AWFW
(c) (i)	$\mu=108.5$			
	Mean, $\mu=108.5$	B1		CAO
	Variance, $\frac{\sigma^{2}}{n}=\frac{4^{2}}{10}=1.6$	B1	2	CAO; OE
(ii)	$(110-108.5$			Standardising (109.5, 110 or 110.5) with [μ from (i)] and
	$\mathrm{P}(\bar{X}>110)=\mathrm{P}\left(Z>\frac{110-108.5}{\sqrt{1.6}}\right)$	M1		$\left[\sqrt{\frac{\sigma^{2}}{10}} \text { or } \frac{\sigma^{2}}{10} \text { from (i) }\right]$
				and/or ($\mu-x$)
	$=\mathrm{P}(Z>1.19)=1-\Phi(1.19)$	m1		Area change
	$=0.117$ to 0.119	A1	3	AWFW (0.11784)
	Total		15	

MS/SS1B (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$p=0.4$ Attempted use of $\mathrm{B}(7,0.4)$ in (a) $\mathrm{P}(X \leq 2)=0.419 \text { to } 0.421$	$\begin{gathered} \text { M1 } \\ \text { B1 } \end{gathered}$		AWFW (0.4199)
(ii)	$\begin{aligned} & \mathrm{P}(X>1 \text { and } X<5)=\mathrm{P}(2 \leq X \leq 4) \\ & =\mathrm{P}(X \leq 4) \\ & -\mathrm{P}(X \leq 1) \\ & =0.9037-0.1586=0.744 \text { to } 0.746 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	5	Identification of at least 2,3 and 4 Identification of exactly 2,3 and 4 AWFW (0.7451)
(b)	$\mathrm{P}(Y=7)=\binom{n}{7}(0.4)^{7}(0.6)^{n-7}$	M1		Correct expression for B(7; $n, 0.4$) with $n \neq 7$
	$\begin{aligned} & =\binom{28}{7}(0.4)^{7}(0.6)^{21} \\ & =0.0425 \text { to } 0.0427 \end{aligned}$	A1 A1	3	Fully correct expression may be implied AWFW (0.042556)
(c)	$\begin{aligned} & \text { Mean }=n p=2.8 \\ & \begin{array}{r} \mathrm{SD}=\sqrt{n p(1-p)} \\ =\sqrt{1.68} \\ \quad 1.29 \text { to } 1.31 \end{array} \end{aligned}$	B1 B1	2	CAO AWFW
(d) (i)	$\begin{aligned} & \text { Mean }=2.8 \\ & \mathrm{SD}=2.24 \text { to } 2.27 \\ & s_{n-1}^{2}=5.14 \text { to } 5.15 \text { and } s_{n-1}^{2}=5.04 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	3	CAO $\Sigma f x=140$ AWFW $\Sigma f x^{2}=644$ Substitution of values into correct formula for variance or SD or $\mathrm{SD}=5.03$ to 5.15 AWFW M1
(ii)	Means are the same SDs differ greatly	$\begin{aligned} & \mathrm{B} 1 \sqrt{ } \\ & \mathrm{~B} 1 \checkmark \end{aligned}$		ft on (c) and (d)(i) ft on (c) and (d)(i); but must be s with σ or s^{2} with σ^{2}
	Thus answers do not support Aaron's belief	B1	3	Dependent on B1 above CAO
	Total		16	

MS/SS1B (cont)

[^0]: COPYRIGHT
 AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

 Set and published by the Assessment and Qualifications Alliance.

 The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334. Registered address AQA, Devas Street, Manchester. M15 6EX.

